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Abstract

Decompression sickness (DCS) is a complex multivariable problem. A mathematical description

or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to

define a decompression dose using physical and physiological variables, and an appropriate analytical

approach. It also requires a high-performance computer with specialized software since thousands of

exposure records with tens of variables are now available. I have used published DCS data (from hypo-

baric decompressions of humans in altitude chambers) to develop my decompression doses, which are

variants of equilibrium expressions for evolved gas plus other explanatory variables. The analytical

approach I have chosen is survival analysis, where the time of DCS occurrence is modeled. I chose this

approach because a log logistic survival analysis is a powerful method by which to test competing

hypotheses as well as to develop probability models about hypobaric DCS. My conclusions can be

applied to simple hypobaric decompressions - ascents lasting from 5 to 30 minutes - and, after minutes

to hours, to denitrogenation (prebreathing). My conclusions are applicable to long or short exposures,

and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like

my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future

spaceflight crews on the Moon and Mars.



Introduction Methods

Scientists have been challenged to

understand and prevent hypobaric decompression

sickness (DCS) ever since humans were taken high

into the atmosphere following development of the

jet engine. DCS, in all of its myriad forms and

manifestations, is fundamentally linked to evolved

gas in the body. A fundamental axiom about DCS is

that a transient gas supersaturation, also called over-

pressure or pressure difference (AP), exists in a

region of tissue. The sum of all gas partial pressures

there is greater than the ambient pressure opposing

the release of the gas. The metastable condition

may resolve with a phase transition (in the presence
of micronuclei), and some of the excess mass

(moles) of gas in the form of bubbles may be

accommodated by the tissue and cause no

symptoms. The likelihood or probability that DCS

increases as the evolved gas dose increases is a

necessary but not sufficient condition in the

mechanical view of DCS. We do not yet know all

of the complex biophysical processes responsible

for evolved gas in the tissue. We know even less

about the linkage between evolved gas and

subsequent signs or symptoms of DCS.

What we do know is that because of the

complex and dynamic biophysical, biochemical, and

physiological processes associated with living tissue,

micronuclei and later bubbles may or may not form

given the same experimental conditions. Even when

bubbles grow, symptoms may or may not develop

under the same experimental conditions. It is

therelore better (or appropriate) to consider DCS as

a probabilistic rather than a deterministic event. _.z

By this I mean that the presence or absence of

symptoms -- for the same individual and under

identical experimental conditions -- may or may

not be observed from one day to the next. So, a

quantitative description of DCS requires a large

number of quality research data? ideas on how to

define a multivariable decompression dose, and

analytical approaches that maximize the available

information. A log logistic survival analysis

provided me with a powerful method to test

competing hypotheses about DCS as well as to

provide DCS probability models. +-7

Selecting the Appropriate Hazard Function

Since the survival function S(t), cumulative

distribution function (cdf) F(t), hazard function h(t),

cumulative hazard function H(t), and probability

density function (pdf) f(t) are different expressions

of the same survival analysis, it is possible to derive

all of them by just "knowing one of them. 7,8-_The

survival function is defined as S(t) = 1 - F(t). Since

the probability density function, f(t) = dF(t) /dt, is

related to the hazard function, h(t) = f(t) / S(t), the

functional form of h(t) may be revealed given F,(t)

from a plot of DCS data, where Fn(t) is the

empirical representation of F(t). An equivalent

definition of h(t) is dF(t) / dt / ( ! - F(t)). The

mathematical relationship between h(t) and F(t) is

clearer with this form. I will discuss my approach in

terms of h(t) because an a priori rationale exists for

determining h(t) for hypobaric DCS.

The hazard function h(t) defines the

instantaneous failure rate at a specific time, given

that the subject survived to at least that specified

time point without a response. It is expressed in

hour-J in my application. Lee 9 states, "h(t) gives the

conditional failure rate; the probability of failure

during a small time interval, assuming that the

individual has survived to the beginning of the

interval, or as the limit of the probability that an

individual fails in a very short interval, t to t + At

per unit time, giveq that the individual has survived

to time t." In my case, h(t) gives the probability of

decompression sickness P(DCS) per unit time during

the altitude exposure given that the individual has

survived to time T while at altitude. The

instantaneous failure rate for hypobaric DCS

eventually goes to zero; indeed, some subjects

never get DCS at a lower pressure, assuming that

the lower pressure is greater than about 2.5 psia

since hypoxia and ebulism prevent humans from

going to a vacuum. If humans remain at the lower

pressure long enough -- say, tbr 48 hours -- they

will come into a new equilibrium with that

environment and are not at risk for DCS unless they

once again ascend to an even lower ambient

pressure. This situation differs from the lifetime of '



light bulbs, for example. Eventually all light bulbs

in a random sample will fail, so h(t) will never be

zero for light bulbs. A new type of survival analysis,

which is called "cure models," may improve my

current methods; these models properly address the

reality that some subjects will never have DCS.

The function h(t) to describe DCS failure time

might be selected based on a list of available

functions, an understanding of the underlying

failure process, a study of the cumulative

distribution of the failure time F,_(t), or

combinations of all three. The function may

increase, decrease, remain constant, or have a

complex form due to an underlying complex

process2 Many variables interact to define the

failure time (or survival time depending on

preference). The distribution of failure time for

hypobaric DCS in a large data set from different

tests is skewed to the right. Figure l shows 1574

cases of DCS in the hypobaric decompression

sickness databank (HDSDP partitioned into

0.2-hour intervals. This figure is a histogram

representation of f(t), in which the symbol f,(t) is

used to signify the empirical representation of f(t).

The solid curve is the histogram smoothed with the

normal density function. The inset shows the same

information replotted after a natural log

transformation of failure time. This distribution

appears normal. There were some severe tests, and

symptoms were reported prior to or immediately on

arrival at the test altitude. These symptoms actually

developed during ascent to altitude, and the few

cases that developed were assigned a i-minute

failure time in the HDSD since the convention was

to start exposure time upon arrival at the test

altitude. This convention accounts for the few cases

seen at the left of the otherwise normal log

distribution. Figure 2 shows the cumulative DCS

failure distribution of the 1574 cases of DCS

described in Figure 1. The inset shows an expanded

view of the failure time over the first hour to better

visualize the shape of F(t) near time = 0.
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Figure 1. The histogram shows the proportion of 1574
cases of DCS as a function of time at altitude. The

histogram is the empirical probability density function

fn(t). The inset shows the natural log transformation of
the skewed distribution into a normal distribution.

These data show that DCS, under a variety of different

test conditions, is manifested early; that is, within the

first 2 hours of exposure.
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Figure 2. The empirical cumulative distribution F_(t)
for 1574 cases of DCS out of 3895 exposures. F(t) is

the cumulative distribution of failure time divided by

the total number of records in the tests. The inset

shows the same data, but the time axis is limited to

the first hour after reaching the test altitudes. The

changing slope is easier to see on this expanded time
scale, and this slope is important to the selection of an

appropriate survival model.



There are several observations about DCS

that help us to define an appropriate h(t). First,
the rate at which DCS occurs is a function of

time, so the exponential distribution of failure

time is not considered here. The exponential

distribution defines h(t) as a constant, so the time

at alti-tude has no relation to the failure rate. If

h(t) was constant, the cumulative distribution of

failure time, approximating the F(t), would be an

increasing exponential defined as: 1 - exp(-k * t),

where k is a constant. The function S(t) would be

a decreasing exponential defined as: exp (-k * t).

The natural log transformation of S(t) yields In
S(t) = -k * t, which is a linear function of time. It

is easy to reject that the failure times come from

an exponential distribution since a plot of In S(t)

against time in Figure 2 is not a straight line,

with the slope k being the constant hazard rate.
Second, observations of failure times and

symptom intensity also help to define h(t). The

onset of a symptom is not instantaneous, and the

risk of having a symptom increases with time.

But, it is unlikely that a person will develop a

symptom if he/she survives past some critical

time since breathing 100c_ oxygen (O_) (as is

usually done at altitude) will ultimately reduce

the nitrogen (N_,) pressure in the tissues. Also,

some subjects with Type I (pain-only) symptoms

report that the intensity of pain reaches a peak

before it subsides: and that, in some cases, the

pain is completely gone before the end of a test.

Third, observations about venous gas emboli

(VGE) are helpful to define h(t) for DCS since

evolved gas is fundamentally linked to a

subsequent report of pain or other signs and

symptoms. °,"_The two types of data share a

common underlying etiology. Figure 3 shows the

cumulative VGE failure distribution for 536 of

1401 records in the HDSD. Not all tests

produced VGE.

Therefore in hypobaric decompressions, the

instantaneous risk of DCS may increase with

time, but only up to a certain point. The observed

pattern of DCS and VGE failure time and the

intensity of symptoms lead me to conclude that the

incidence of DCS from hypobaric decompressions

0.5

co

0.4
I.IJ
(.9
>

c,D

to
-- 0,3
o

o
e_

0.2

E
o,1

A
LJ-

0.0

/

n = 1401 total cases 536N, N4t/

l w i _ i 1

-
I o.,ot /t

____ "5 ¢.,01 i o.o t J I_
t . oi o0.00L--"", , , I

I i , , ,Time (hrs)

1 2 3 4 5 6

Time (hrs)

Figure 3. The empirical function Fn(t ) for 536 cases of

VGE out of 1401 exposures. The inset shows the data

up to 1 hour. VGE are detected noninvasively with

Doppler ultrasound technology. The pulmonary artery

is insonated with the ultrasound beam, and the

presence of moving bubbles on the way to the

pulmonary circulation is noted. Figure 2 has a similar

shape, which suggests that VGE and DCS share a

common etiology.

would be described well with an h(t) that rises to

a peak before it decreases with time. The log

normal or log logistic survival models are good

candidates for this, since both provide for a non-

monotonic h(t). Unfortunately, the functions F(t)

and S(t) for both models may be "S"-shaped.

It is at the level of h(t) and fit) that the two

distributions are distinguishable. The log logistic

model does not provide a slow increase of h(t)

and f(t), but the log normal model does provide

for this. The log normal is slightly better in most

cases, due in part to its ability to describe this "lag"

component of h(t); but the log logistic model is

easier to implement. Details about the log logistic

survival model are shown in Appendix A.

Data

Analyses presented here are based on

results from documented hypobaric chamber tests

and approaches_ that account for failure and

4



censoredtimes.Investigatorsin theU.S.Navy
havealsoexploited information about DCS

failure time in divers. _2In my application, failure

time is defined as elapsed time from the

beginning of a test after the decompression to the

first report of a DCS symptom. Censored time is

defined as elapsed time from the beginning of a

test after the decompression to the scheduled end

of the test, also called right censored time. I

define h(t) in terms of several variables -- P1N_,

P2, the presence or absence of exercise at P2,

time at P2, the presence or absence of VGE, etc.

-- and I use the notation h(t; z) = f(time, P2,

P1N__, exercise, VGE, etc.) to denote the hazard

function for a decompression dose model, where

t is time and z represents various combinations of

variables and constants. Appendix B lists some of

the variables and their definitions in the HDSD

that were used to model DCS.

The HDSD is a computerized repository of

information that was reported in the literature*

about DCS experienced in hypobaric chambers?

The HDSD currently contains information from
456 altitude tests. A test is a collection of altitude

exposures where one or more subjects were used

to evaluate a particular test condition. The total

number of exposures in 456 tests is 131,399.

Twenty-seven tests had 117,422 exposures; none

of the results reported here contain information

from these 27 tests. A subset of the 456 tests

provided detailed information for each subject in

the test, such as height, weight, age, gender,

failure time to first detection of VGE, etc. There

were 21 i tests with 3895 exposures; the data in

these tests were used in this report. The outcome

or response variable is the presence (coded as 1)

or absence (coded as 0) of any DCS sign or

symptom -- excluding paresthesia when it was

the only symptom -- plus the failure time to the

report of the first symptom.

*The literature represents a sample of DCS research
done from the year 1940 to the present.

Management of 0 2 Prebreathe

Prebreathing I00% O_ or O_-enriched

mixtures prior to a hypobaric decompression is an

effective and often-used technique to prevent DCS.

It is therefore necessary to account for the use of

O_-enriched mixtures prior to decompression to

use the majority of information in the HDSD.

The N_ partial pressure in a tissue is an

important variable in any mechanistic model

about DCS. Equation (1) defines how Pl N, is

calculated by approximating the more complex

process of dissolved N, kinetics in living tissue

by a first-order kinetics. Following a step-change

in N_ partial pressure in the breathing medium.

such as during a switch from ambient air to a

mask connected to 100% 02, the N 2 partial

pressure that is reached in a designated tissue

compartment after a specific time is:

PIN_ = Po + (P_- Po) * (1 - exp-k* t), 1)

where PIN 2 = the N 2 partial pressure in the tissue

after t minutes, Po = initial N 2 partial pressure in

the compartment, Pa = ambient N 2 partial

pressure in breathing medium, exp -- base of

natural logarithm, and t = time at the new Pa in
minutes. The tissue rate constant k is related to

the tissue N_ half-time (t_/2) for N 2 pressure in a

compartment, and is equal to 0.693 / tn/2, where

t_/2 is the 360-minute tissue N 2 partial pressure

half-time, and 0.693 is the natural log of 2. Half-

time is the time taken for N 2 pressure to increase
or decrease to one-half of the difference between

the initial and final values. About 94% of this

difference is achieved within four half-time

periods. A half-time of 360 minutes is used

because Type I altitude DCS and VGE have been

shown to correlate well with long half-times,

using 100% 02 in altitude chamber flights

eliminates faster compartments as potential

contributors to DCS, and long half-times also

govern the return of divers from saturation

exposures. The initial, equilibrium N 2 pressure

(Po) in the tissue at sea level is taken as 1i.6 psia

instead of an average alveolar N 2 pressure of I 1.0

psia. The use of dry-gas, ambient N_,pressure as



equilibriumtissueN, pressure(P0),andastheN_
pressureinthebreathingmixture(P) makesthe
applicationofEq.(I) simple.Theratioof P1N, to
P2isthetissueratio(TR),wherePIN_is the
calculatedN 2 pressure just prior to ascent to altitude

and P2 is the ambient pressure after ascent. The

importance and implication of TR as an expression

of evolved gas is developed elsewhere. 6.13

I have described the logic that led me to

select an appropriate h(t), have briefly described

my source of response and explanatory variables,

and will now provide an example of the analyt-

ical steps that gained me a better understanding

of hypobaric DCS.

Analytical Process

The hazard function hit) tbr the log logistic
survival model 7 is:

htt)= 2. * ttz-_) . p_ / [1 + (t * p)_], (2)

where X and p are index (unitless) and scale

(hour -_) parameters to be estimated, respectively,

and t is time in hours in this application. When I > I,

h(t) has a maximum and resembles a bell shape.

The cumulative hazard function Hit) is

obtained by integrating hit). Thus:

t

Hit) = .f h(x) dx, (3)

0

where x is the dummy variable of integration.

Note that h(t) may not vary with time, as with the

exponential model, but the integral of h(t) will

give Hit) in terms of the starting and ending time

at P2. A combination of Eq. i2) and Eq. (3) yields:

H(t) = In [1 + it * p)Z], (4)

where In is the natural logarithm. Since the

survival function S(t) is also defined as:

S(t) = e - H(t), (5)

I obtained the following expression for S(t) from

Eq. (4) and Eq. (5) for the log logistic model:

S(t) = 1 / [1 + (t * p)Z]. (6)

The probability density function f(t) is:

f(t) = h(t) * e -H_'_, (7)

which may be expanded as follows from Eq. (2)

and Eq. (4) for the log logistic model:

fit)=_.*(tz-I)*pZ/[l + (t * p)Z]L (8)

Now P(DCS) given failure time T < the

exposure time t becomes:

P(DCS T _< t) = 1 - e- H,_. (9)

In order to account for variables other than

time that influence P(DCS), I expand the hazard

function hit) but retain its functional form as

given by Eq. i2). The gas phase contribution to

h(t) could be as simple as 1 / P2, or as complex

as i((PIN 2 + cl) / P2)- 1)c2 but the exercise

contribution is always in the form ( I + (c3 *

exercise)), where exercise at P2 is one or zero,

and c l, c2, and c3 are estimated parameters. The

modified h(t; z) for the log logistic model that

includes P2 and exercise is:

h(t: z)= _.*(1 /p2)c2, [1 + (c3 *exercise)] * tt_.-J), pz

/ [1 + (1 / P2 F2* [1+ (c3 *exerciset l * It *pj;q. / 10)

The function H(t: z) from Eq. (3) and Eq.

(10) becomes an expression of decompression
dose as a function of three variables associated

with DCS plus the fitted parameters that maxi-

mize the agreement between dose and response:

Dose = H(t; z)

=[in(l +(I/P2F 2

• [1 + (c3 * exercise)] * (t * OFg], (l I)

and P(DCS) given failure time T based on P2,

exercise, and time t at P2 becomes:

P(DCS T --<t) = 1 - e-D,'_. (12)

Parameter Estimation

by Maximum Likelihood

Maximum likelihood is the preferred

method to optimize unknown parameters in a

probability model where the response variable is



dichotomousandthe predicted value is a

probability. The maximum likelihood method

provides the probability that y = I (the response)

given a value for x (the dose). This has been

clearly explained by others. 2.s-HThe likelihood

function for a set of data containing (d + n)

elements with some right censored times has two

components, one for the failure times (subset d)

and the other for the censored times (subset n).

Denoting the failure times by t_, i = l, 2 ..... d,

and the censored times by t,, i = d + 1, d + 2.....

n, the likelihood function (L)is:S

d n

L = ]-[ f(t i) * 1"-]S(ti). (13)
i=l i=d+l

A subject with DCS contributes a term f(t_)

to the likelihood, the density of failure at ti. The

contribution from a subject whose survival time

is censored at ti is S(t,), the probability of

survival beyond t i.

The log likelihood (LL) is:

d n

L = Z In f(t i) + Y In S(ti). (14)
i=l i=d+!

The SYSTAT (ver. 5.03) Nonlin module I_

was used to estimate unknown parameters in the

models. Estimation by maximum likelihood was

accomplished by specifying the negative LL in
the LOSS statement:

LOSS = - In (ESTIMATE), (15)

where ESTIMATE is a number from one to zero

from the LL function, as explained below. The

LL function structured in SYSTAT for the log

logistic model, as an example, is:

LL=[DCS*X*(t x-I)*px/[1 +(t*p)X]:]

+ [(I -DCS) * I /(1 +it * p)Z)]. (16)

f(t/or Rt; z/ S(t) or S(t: z_

The computer evaluates Eq. (16) for the
first row of hundreds of rows of data. The first

row contains values for the observed DCS ( I o1"0),

PIN 2 (psia), P2 (psia), exercise (I or 0), and time

(hours): failure time when DCS = 1, or censored

time when DCS = 0. When DCS is one, fit; z) is

evaluated, and when DCS is zero, S(t; z) is

evaluated. The numerical result, between zero

and one in each case, is called ESTIMATE,

which is evaluated with initial values of the

unknown parameters in the model and is used in

Eq. (15). The LL calculation from Eq. (15) is

repeated over all rows, and the LL is summed
over all rows. The summed LL is then minimized

using the Quasi-Newton algorithm, l-_Iterations

continue for parameters in the model until a

predetermined convergence criterion is reached.

Results

Table I is a compilation of a number of log

logistic survival models for DCS, expressed as

h(t: z), included in two of my reports. 4.5This

table shows a progression from simple to more

complex models. The complexity comes as I

attempt to describe evolved gas with

combinations of variables and constants

associated with evolved gas, and with my notions

of how pain is per-ceived as tissues are deformed

by evolved gas (see Appendix in ref. 6). Also,
some information -- such as the VGE

information, which when added to the model

improves the description of DCS failure time --

in the complex models is strictly correlative with
DCS. Values and other details of the fitted

constants are not reproduced here. Equation (17)

identified prebreathe (P1N 2), the final altitude

pressure (P2), the presence of exercise at altitude,

and the length of the exposure as important
variables to describe the DCS failure time in

1075 exposures. Figure 4 summarizes my three

main conclusions that, for a given calculated N_

pressure in the 360-minute half-time compartment,

DCS risk increases (1) as P2 decreases (any

vertical line through the curves_, (2) as time at P2

increases (two filled circles along the 4.3 psia

curve), and (3) if exercise is performed at P2

(two filled circles at 4 hours exposure on the 4.3

psia solid and dashed curves).



TableI. VariousLogLogisticSurvivalModelsfor DCS

Model Parameters

loglogisticsurvivalmodel(nullmodel)

h(t)= ). * (p.-i), p_./(1+ (t * p)_,) 2(_.,p)

loglogistichazardfunctionwithadditionalvariablesandconstants(acceleratedmodel)
h(t:z) = [_. * z, * (t_.-j) • pZ] / [1 + z,, * (t * p)X]

zl= I/P2 2

z_ = PIN_ / P2 2

z3 =(PIN_ / P2)-c 3

z4 =(PIN: / (P2 + cl))- 1.0 3

z5 = ((PINe + cl)/P2)-1.0 3

z<,= (((PIN e + cl) / P2) - 1.0) * (1 + (c3 * exercise)) 4

z7 = ((PIN, / (P2 + cl)) - 1.0),-" * (! + (c3 * exercise)) 5

z0 = (((PIN 2 + cl)/P2)- 1.0) c2 * (1 + (c3 * exercise)) 5

z_ = z<_* [1 + (c4 _. vge)] 6

= * [I + (c4 * vge)] • {1 + [c5 * (1 / vgetm)]} 7Z 9 Z 0

zlo = z<)* [I + (c4 * mvge)] * {1 + [c5 * (1 / vgetm)]} 7

ztl = zo * [1 + ( mvge_4)] • {1 + [c5 * (i / vgetm)]} 7

zl_,= zo * [1 + (c4 * vgeI,II)] * [I + (c5 * vgelll)] * [1 + (c6 * vgelV)] 8

z13 ---- Z0 * [1 4- (ca 8: vgeI)] • [1 + (c5 * vgelI)] * [1 + (c6 * vgelII)]

• [1 + (c7 * vgelV)] 9

= * [1 + (c4 * vgeI.II)] • [1 + (c5 * vgelII)] * [I + (c6 * vgelV)]ZI4 Z 0

• {1 +[c7*(l/vgetm)]} 9

Eq. (17)

Eq. (18)

An important conclusion is that for the same TR,

in this case 1.65, the risk of DCS is greater at a

lower P2 for a given exposure time and exercise

condition (two filled circles on the 4.3 psia and

6.0 psia curves at 4 hours exposure). The fitted

constant c I in the numerator of Eq. (I 7) is

responsible for this result. Other ways of

accommodating the constant did not provide as

good a fit of the model to the data. I suspect that

the importance of the constant is its linkage to

metabolic gases in the evolved gas. j3-10

Once the best model from a family of models
is determined, it is still not clear whether there is a

good fit of the best model to the data. The

likelihood ratio test ')._7defines when no further

improvement is possible by adding more degrees

of freedom (parameters to fit) to the model.

However. the test offers no absolute goodness-of-

fit summary such as is provided by the coefficient

of determination (p-') in a least-squares regression.

There are few available analytical tools, outside of

a Statistics Department, to assess goodness-of-fit of

a survival model. I use graphical approaches to

"visually" assess goodness-of-fit. Figure 5 shows

the predicted vs. the observed group incidence of

DCS in 66 tests; i.e., the tests that provided the
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Figure 4. The P(DCS) at either 3.5, 4.3, or 6.0 psia
with (solid line) or without (dashed line) exercise at a

particular time after decompression. The ratio of P1 N2
to P2 (TR) in Eq. (17) was 1.65 for each curve, but

notice the P(Bcs) increases as P2 decreases at any

particular time after decompression. The 95%

confidence interval is provided for the curve specific to

the 4.3 psia exposure that included exercise.
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Figure 5. Predicted vs. observed DCS incidence in 66
groups used to fit Eq. (17). The area of a circle is
proportional to the number of subjects in a group. The
three filled circles are results from NASA tests at 4.3
psia with TRs between 1.60 and 1.65 where exercise
is (the two circles above identity line) and is not (the
circle below identity line) part of the test. The model
neither over- nor underestimates the entire data set,
but it did overestimate the incidence of DCS in several
small groups that reported no symptoms.

1075 decompression records. A perfect description

of the data by my model would require that all tests

fall along the identity line. ! have also validated

this model in a set of data not used to optimize the

model. 41 conclude that Eq. (17) (expressed

through Eq. (12)) describes reasonably well both

the DCS and the no DCS cases in 1075 exposures,

and could be used prospectively.

Figure 6 is a simulation based on Eq. (18)

(expressed through Eq. (I 2)) where data about
VGE were available in 1322 records that would

improve the estimate of DCS failure time. The

figure shows that the presence of Grade IV VGE

increases the risk of DCS compared to all lesser

grades. Additional information about the

simulation is provided in the description of the

figure. Although it can be argued that any
information on VGE used to describe DCS is

invalid -- since both DCS and VGE are

responses to decompression -- the intensity and

time course of VGE are information that relate

(correlate) to a subsequent DCS symptom. I°
I conclude that the inclusion of VGE

information into my basic model (Eq. (17)) was

beneficial, and it also improved the goodness-of-fit.

Figure 7 is a visual representation of goodness-of-

fit for Eq. (18). This presentation differs from Fig.

5 in that each subject in the 1322 exposures had a

unique P(DCS) since no two subjects necessarily
had identical VGE information. As before, l

conclude that Eq. (18) describes reasonably well

the DCS and no DCS cases in 1322 exposures.

Equation (17) and Eq. (18) were attempts to

develop useful hypobaric DCS probability

models. Like other researchers, _8I explored using

survival analysis to test a specific hypothesis. I

was curious about the linkage between evolved

gas in a tissue and the report of a DCS symptom.

Often elegant and complex models about bubble

growth in tissue neglect this aspect of the

9
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Figure 6. The P(DCS)VS. time at altitude from Eq. (12),
given by Eq. (18) in Table I, for a simulated decom-
pression at a TR of 1.65 (7.1 P1N 2 /4.3 P2), all with
exercise, with a VGETM of 1 hour, and with the
presence of VGE at Grades I and II, III or IV, and the

absence of VGE (Grade 0). Review Appendix B for the
definition of the variables used in this analysis.
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Figure 7. A bar graph to show the observed incidence

of DCS in 10 intervals compared to the predicted P(Dsc)
from Eq. (12), given by Eq. (18) in Table I. The 1322
records were first divided into 10 probability intervals
based on the P(ocs) from Eq. (12) for each record.
The number of DCS cases in the interval were then

divided by the total number of cases in the interval
to give the incidence of DCS. Equation (12) did not
systematically under- or over-predict the observed
incidence. It did under-predict the observed incidence
in intervals from 0.60 to 0.90, however.

problem. The published report o develops the

rationale about how a power term fitted to my

simple equations of evolved gas may link

evolved gas to the P(DCS). Conceptually, as the

intensity of a symptom increases (as a power) the

P(Dcs) increases to a certainty. Figures 8 and 9

show the dramatic improvement in describing the

DCS failure times in 1085 exposures simply by

including a power term in a simple expression

(AP) of evolved gas.

The solid curve on Fig. 8 from a model

without a power term does not pass near the

majority of group DCS incidence data as compared

to the curve on Fig. 9. I was motivated to evaluate

this concept based on an earlier analysis by Nims. 19

Figure 10 shows that my survival model as a

probability density function f(t; z) gave results

similar to Nims's results, but my statistical

methods differed greatly from the deterministic

methods used.

Although the shape, if not the magnitude, of

the two curves is similar, Nims did not explicitly

use a power term in the expression of DCS dose.

My observation that different methods lead to

similar results reinforced my belief that conclusions

from hypothesis testing with incomplete models

should be verified with experimental data.

Conclusions

I have used survival analysis with

maximum likelihood optimization as the basis of

my description of the failure time for DCS under

a variety of decompression conditions tested in

hypobaric chambers. My first goal was to

identify an appropriate hazard function. This was

based on a survey of DCS and VGE data that

were contained in a computerized databank as

well as on descriptions and observations on how

DCS symptoms progress through time (Figs. 1-3).

10



1.0

co 0.8
r,.)

0.6

O

o.4

..Q

O 0.2

0.0

, o_:xD 'O O

o
o

/o o
/ 9 LL:-1026

0.0 0.5 1.0 1.5

Dose 1 = H(t; z) = In [__pi. (l * 0.047) °92]

,-,q

II

i

N

Figure 8. A scatter plot that shows the observed
incidence of DCS in a group and the calculated

decompression dose with Dose 1 = In [1 + (P1N 2-
P2){, * (t * 0.04728)°922], where c_= 1, and P1N 2 is
from the 360-minute half-time, plus a curve from Eq.

(12). The position of each circle along the vertical axis
depends on the value of Dose 1 for each group.
Superimposed on the circles is a solid curve from Eq.
(12), given f(t; z) on the figure, that is the P(DCS) as a
function of Dose 1. The area of a circle is proportional

to the number of subjects in a group; the smallest
circle represents a test with 2 subjects and the largest
circle represents a test with 77 subjects.
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Figure g. A scatter plot that shows the observed
incidence of DCS in a group and the calculated

decompression dose with Dose 2 = In [1 + (P1N 2 -
P2) _,* (t * 0.00001517)1.491], where o_= 8.44, and P1N2
is from the 91-minute half-time, plus a curve from Eq.

(12). The horizontal positions of the circles are the
same as in Fig. 8, but the vertical positions have
changed owing to the recalculation of decompression
dose. The goodness-of-fit was improved by estimating
the half-time, but the greatest improvement came
from estimating e_.The circles are positioned more

symmetrically around the curve than in Fig. 8, and the
LL improved from -1026 in Fig. 8 to -714 in this figure.

For my purposes, the exponential survival model

was clearly inappropriate; and while the log normal

model was slightly better than the log logistic, it

was more difficult to implement. I also evaluated

other models for failure time distribution, but the

log logistic model proved to be the best overall

for my applications.

My efforts over the past few years have

been directed toward developing probability

models for DCS that have accounted for major

physical and physiological variables (Figs. 4-7).

I have not completed analyzing several variables

known or suspected to influence the risk of DCS.

Age and gender differences continue to be discussed

as modifying factors for DCS. While it is difficult

to include age and gender in a deterministic

(theoretical) model of DCS, it is simple to include

these in a statistical model. I am always surprised

to find that one long half-time compartment

(about 6 hours) is adequate to describe the results

from the variety of hypobaric tests at my disposal.

I have brought empirical models into better

agreement with bubble models by including a

term to account for the presence and consequence

of metabolic gases in total evolved gas.

My second use of survival analysis was to

test a hypothesis about the inclusion of a power

term into simple expressions of evolved gas

(Figs. 8-10). My goal was to understand a

mechanism about the perception of pain. An

exciting area to explore with research and

modeling is the biophysical linkage between

evolved gas and perception of pain. The future for

hypothesis testing and developing better predictive

11
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Figure 10. The resulting f(t; z) for the average AP of 6.0
psia from the f(t; z) equation on Fig. 9 where ct = 8.44,
p = 0.00001517, k = 1.491, and tl_2 = 91 minutes. The
f(t; z) resembles the shape of the curve from Nims t9
(Fig. 40 in ref. 19) in a test with AP = 8.4 psia.

models for DCS is good because new and better

data are being collected and shared. New variables

such as adynamia _-_o.-_and exercise during pre-

breathe -_2,are now being tested. Future models that

include these variables will have application to

astronauts during spacewalks, or when spaceflight

crews are walking on planets with reduced gravity
such as is found on Mars.

Applications for DCS probability models will

increase since these are available tools and, if

properly applied, can provide useful information. It

is possible, for example, to lose cabin pressuriza-

tion in the T-38 aircraft. > What is not known is

whether, when pressurization is lost, an emergency

landing is needed to avoid DCS. I applied Eq. (17)

(expressed through Eq. (12)) under two scenarios

for the T-38. > The DCS risk for the loss of pressure

during a normal flight is seen in Fig. I I: the DCS

risk for loss of pressure during a high-altitude

flight is seen in Fig. 12.

:Adynamia is a concept about how gravity is a variable

in DCS. particularly how walking in a gravitational
field influencc micronuclei that in turn influence the

likelihood of DCS.
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i i i i i i

o ! t I I I i

1
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I
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Figure 11. The approximate flight envelope (solid
near-vertical lines) of the T-38 and the resulting cabin
pressure (dashed line) under nominal flight conditions.
Transposed over the flight envelope are 12 DCS
isoincidence isopleths for the condition where the crew

is not physically active. The proper way to determine
the risk is to select a time of exposure and the altitude
of the exposure and then to interpolate between the
isopleths. For example, the dot at the intersection of 1
hour and 30,000 ft falls directly on the 20% DCS
isopleth; this is the best estimate of risk. There is no
risk of DCS if cabin pressure is maintained. However,
a loss of cabin pressure for even brief periods of time
can expose a crew to a high risk of DCS. The
likelihood of very serious DCS symptoms is greater as
the risk of any DCS symptom increases.

The T-38 can fly high, but only for a short

duration. Altitude, duration, prebreathe, and

exercise at altitude are variables in Eq. ( !7). I

assumed a limited use of 02 during the flight

(defined in ref. 23) and the aviators were not

physically active during flight. Figure 11 shows the

P(DCS) given that the aviator was exposed to a

certain decompression for a certain time. Notice

that below a normal cabin altitude of 18,000 ft, it is

unlikely that DCS will occur. However, a 1-hour

exposure to 30,000 ft puts the aviator on the 20%

DCS isopleth (solid point). During high-altitude

flight, the cabin altitude can increase to 22,000 ft,

but the flight time is limited to just over an hour.

Figure 12 shows the lowest cabin pressure (22,000

ft) with the T-38 at the highest operating altitude

12
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Figure 12. The flight and cabin pressure envelope in
the T-38 under extreme flight conditions. Notice that
even at the lowest cabin pressurization (22,000 ft) and
45 minutes of exposure, the risk of any symptom of
DCS is less than 5%. The majority of the risk is
between 0% and 1% under extreme flight conditions.

(50,000 ft); this pressure is associated with a risk of

DCS between 1% and 5%. The information in Figs.

11 and 12 can help managers make flight rules that

would prevent a loss of cabin pressure in a T-38

leading to the loss of an aircraft and its crew.
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Appendix A:

Two Forms of the Log Logistic Survival Model

A common form of the log logistic survival function S(t) is:

S(t) = I -[ I /( 1 + exp(-¢0))], (A1)

where: co = [In(t)- [3(2)] /[3(1).

The distribution is specified as a two parameter distribution generalized to include the

effects of covariates on survival times. The generalized log logistic is called an accelerated

life model where the logarithm of survival time is a linear function of the covariates:

(o = [In(t)- [3(2)- [3xl * xl - ... - _xn * xn ] / [3(1). (A2)

Other functional expressions of the model are:

h(t) = fit) / S(t) (A3)

f(t)=exp[-(ln(t)-_3(2))/[3(I)]/[(l +exp(-(ln(t)-_(2))/[3(l)))2*[3(I)*t] (A4)

h(t) = f(t) / [1 - ( I / ( 1 + exp(-((ln(t) - [3(2)) / [3(I)))))], (A5)

and of the accelerated life model are:

fit; z) = exp[-([n(t) - !3(2) - [3xI * x [ - ... - [3xn * xn ) / [3(I )] /

[(1 + exp(-(ln(t)- [3(2)- _xl * xl - ... - [3xn * xn ) / [3(1))) 2 * _(I) * t] (A6)

h(t;z)=ftt;z)/[I-( 1/(l+exp(_(ln(t)-_(2)-[3xl*xl-...-[3xn*xn)/[3(I)))))] (A7)

where: [3(1) = scale parameter

[3(2) = index or location parameter

!3xn = parameter from regression for variable n

xn = value for the nth variable

t = time

An alternate form 7 of the log logistic survival model used in my analysis is:

S(t) = exp [-ln(] + (t * p)_q], (A8)

It is expanded to include covariates as:

S(t; z) = exp [-In(1 + (cl * xl) * ... * (% * x,) * (t * p)Z-)]. (Ag)

The h(t) expression of the log logistic model is:

h(t)=_,*(t z I),p)_/(l +(t*p)_-), (AI0)

15



and the accelerated h(t) is:

h(t;z)=_*(cl * xl)*

(1 + (cl * xl) * ...

where: p = scale parameter

2_= index or location parameter

c, = parameter from regression for variable n

x,, = value for the nth variable

t = time

...*(c,,* xo)*(t _-t)*p_/

* (% * x,) * (t * p))_) (All)
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DCS:

DCSTM:

PIN_:

P2:

EXERCISE:

VGE:

MVGE:

VGEI:

VGEII:

VGEIII:

VGEIV:

VGETM:

ALTTM:

Appendix B:

Variables in the Hypobaric Decompression Sickness Database

Dependent Variables

presence (I) or absence (0) of any sign or symptom of decompression sickness

(DCSh excluding paresthesia when it was the only symptom.

failure time to the first sign or symptom of DCS or censored time to the end of the

test in those without DCS (hours).

Independent Variables

calculated nitrogen pressure (psia) from Eq. ( 1) to account for all denitrogenation

procedures.

ambient pressure after ascent Cpsia).

presence ( 1) or absence (0) of repetitive exercise planned for the test.

presence ( 1) or absence (0) of any grade of VGE.

maximum Grade of VGE (0-4) detected during the exposure.

presence (1) or absence (0) of Grade I VGE as the maximum grade of VGE recorded

during a test.

presence (I) or absence (0) of Grade II VGE as the maximum grade of VGE recorded

during a test.

presence ( I ) or absence (0) of Grade III VGE as the maximum grade of VGE

recorded during a test.

presence ( 1) or absence (0) of Grade IV VGE as the maximum grade of VGE

recorded during a test.

failure time to the first VGE detected or censored time to the end of the test in those

without VGE (hours).

scheduled duration of the test or the time t at P2 in a simulation (hours).

17



REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

PaUb_reportingburdenf_ ¢as(:_l(_._.of infonnatiorl ise_.mated .toaverage1 hourperrespoi_se,includingthe timefor reviewingtns_Jctions,searchingexis"ti_ data sources,gatheringand maintainingthe
taneeded,andc(_pleting andrewew=ngthe_ orinformation. Sendcommentsregardm9thisburdenestimateoranyother aspectof this col_ of information, induclingsuggestionsfor reducing

th=sburden, toWash=ngtonHeadquarters_ervlces, Directoratefor InformationOperabonsandReports,12t5 JeffersonDavisHighway,St(de1204, Ad,'ngton,VA22202-4302.and to the Office of Management
end Budget.Paper,yorkReductionProfect(0704-0188),Washington,DC 20503.

1, AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 2(X)I NASA Technical Paper

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Log Logistic Survival Model Applied to H "'ypobmnc Decompression Sickness

6. AUTHOR(S)

Johnny Conkin, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lyndon B. Johnson Space Center

Houston, Texas 77058

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION

REPORT NUMBERS

S-885

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

TP-2(X) 1-210775

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Available from the NASA Center lbr AeroSpace lnlormation (CASt)
7121 Standard
Hanover, MD 21076-1320 Category: 54

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Decompression sickness (DCS) is a complex, multivariable problem. A mathematical description or model of the likelihood of DCS

requires a large amount of quality research data, ideas on how to define a decompression dose using physical and physiological

variables, and an appropriate analytical approach. It also requires a high-pertormance computer with specialized soliware. 1 have used

published DCS data to develop nay decomplvssion doses, which are variants of equilibrium expressions for evolved gas plus other

explanatory variables. My analytical approach is survival analysis, where the time of DCS occurrence is modeled. My conclusions can

be applied to simple hypobaric decompressions - ascents lasting fi'om 5 to 30 minutes - and, after minutes to hours, to

dcnitrogenation (prebreathing). They are also applicable to long or short exposures, and can be used whether the sufferer of DCS is at

rest or exercising at altitude. Ultimately 1 would like my models to be applied to astronauts to reduce the risk of DCS during
spacewalks, as well as to future spaceflight crews on the Moon and Mars.

14. SUBJECT TERMS

decompression sickness; doses, biological effects; altitude sickness; decompression;

altitude simulation; exercise physiology; extravehicular activity

15. NUMBER OF

PAGES

24

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unlimited

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev Feb 89) (MS Word Mar 97)
Prescribed by ANSI Std. 239-18
298-102

NSN 7540-01-280-5500






